

PRISTINE

Innovative and versatile integrated solution to remove contaminants of emerging concern in water treatment systems

UV-LED based Advanced Oxidation Process

Photolytic ozonation as a promising technology for disinfection and CEC removal?

Philipp Sperle

4th June 2025

Basics in advanced oxidation processes (AOPs)

PRISTINE

Generation of highly reactive spices /radicals (OH·) oxidizing pollutants

Well suited for clean water, UV-transmittance > 90% (high quantum yield) and for **conventional UV lamps** (wavelength around 254 nm)

- Provides disinfection, no bromate
- **Low footprint** (hydraulic retention time (HRT) ~ 1 min)
- Higher energy usage because of higher UV-dose required
- Losses efficiency for dirtier water (low molar extinction coefficient) and higher wavelengths as UV-LEDs (around 270 nm)

- No energy use by UV light, high radical efficiency
- Typically not considered for disinfection
- Higher foot print (HRT ~ 3-5 min) depending on the water matrix

- Requires less UV light
- Better suited for dirtier water (high molar extinction coefficient and radicals by O_3 / H_2O_2 - O_3 reactions) and <u>higher wavelengths</u> (using UV-LEDs)
- Provides disinfection?
- Low footprint, higher reaction speed (HRT can be reduced to ~ 1 min)
- Complex process, energy for O3, radical yield might be lower than for $H_2O_2-O_3$

The PRISTINE UV-LED based Advanced Oxidation Skid

Experiments tap water + humic acids (UV transmittance $\sim 87\%$, pH = 7.4-7.7) + Br⁻ + pCBA as probe compound:

- → <u>High boost of pCBA</u> removal when adding UV irradiation (more than double)
- → 3 times higher pCBA removal by O₃-UV with 5 LED Arrays than for H₂O₂-UV AOP with 12 LED arrays
- \rightarrow Reaction 15 min Ozone / 1 min O₃-UV/ 1 min UV/H₂O₂

On going tasks and outlook

- Tests needed in real water matrixes; benefits of O₃-UV seem to depend on water matrix
- <u>AOP pilot experiments with NF permeate currently</u> ongoing, but removal of O_3 on its own too large to quantify effects (perform spiking?)
- O_3 -UV especially **promising** in water with low O_3 decay and radical yield; performance boost to sole O_3
- O_3 -UV might outperform H_2O_2 -UV especially for dirtier waters (e.g. interesting when using NF feed) and higher wavelengths (UV-LEDs), but costs for O_3 generation must be accounted for (currently ongoing)
- $O_3-H_2O_2$ shows better removal, but O_3-UV offers low physical footprint and disinfection
- O₃-UV might be a great option for retrofitting in scenarios where CEC removal and disinfection are required (typical UV doses for disinfection)

PRISTINE

Innovative and versatile integrated solution to remove contaminants of emerging concern in water treatment systems

Thank you!

