

LIFE BIODAPH₂O: Eco-efficient system for wastewater tertiary treatment and water reuses in the Mediterranean region

Victoria Salvadó

Coordinator

victoria.salvado@udg.edu

LIFE PRISTINE Open Days:

An innovative solution to remove contaminants of emerging concern from water streams

The context

- Water scarcety
- Agricultural uses: 80% water in southern countries
- The inefficiency of the treatment systems led to environmental pollution of water
- The problem with emerging pollutants:
 - Pharmaceuticals and personal care products (PPCPs)
 - Perfluoroalkyl substances (PFAs)
 - Microplastics (MPs)
 - Antibiotic resistance genes (ARGs)

BIODAPH a nature –based system

Pillars of BIODAPH technology

Combination of biological filtration (*Daphnia Magna*) and nutrient polishing (biofilm)

Integration of zooplankton in NBS

Daphnia is sensitive to:

- metals
- organic matter
- high ammonia and nutrient concentrations

eurecat

Results in a previous project

eurecat

Emerging contaminants

CFB-clofibric acid **NPX**-naproxen **IBU**-ibuprofen **DCF**-diclophenac **CTP-**citalopram **GMB**-gemfibrozil TCS-triclosan

What is **BIODAPH₂O**

https://life-biodaph2o.eu/

BIODAPH₂O is a demonstration project which main objective is the **scaling-up** and implementation of BIODAPH technology at two demo sites located in water-stressed regions of the Mediterranean area with the objectives of:

- To diminish discharges of pollutants and pathogens in freshwater ecosystems
- To promote agricultural reuse of this reclaimed water

Total amount: 2,128,772.06 **% EC Co-funding:** 1,277,263.23 **Duration:** 01/08/2022 – 31/08/26

Scaling-up: 1.5 m³ to 100 m³

Coordinator

Project BIODAPH₂O phases

Assessment of the efficiency at different operating conditions:

Removal of pollutants (emerging contaminants, nutrients, suspended solid & pathogens) in accordance with national & EU regulations

- To upscale BIODAPH technology
- To optimize hydrodynamic and biological design parameters

- To build and install the reactors:
 - To treat 200 m³/day in Spain
 - To treat 10-50 m³/day in
 Greece

- · LCA, LCC, S-LCA
- Environmental Technology verification (ETV)
- · Exploration and business plan

Dissemination and communication plan

Two demo-sites, two configurations, and two objectives

To improve the quality of aquatic ecosystems

To obtain reclaimed water for agricultural irrigation EU 2020/741

BIODAPH reactor: Design and construction

Spanish Patent and Trademark Office, Model Utility, ES1234189

Efficiency

Emerging contaminants

Removal

BIODAPH₂O

PFAs

Antibiotic Resistance Gens (ARGs)

Removals

Microplastics

BIODAPH reactor in Antissa demo case (Lesvos, Greece)

Emerging contaminants

Antibiotic Resistance Gens (ARGs)

Water Reuse

Production of 146,000 m³ of reclaimed water at the Spanish site and 13,200 m³ for irrigation at the Greek site

Efficient WWTP

Up to 98% reduction of energy consumption in comparison with conventional and advanced WW tertiary systems

Expected impacts

"The power of Daphnias"

Improvement of the river ecosystem services and reduction of emerging pollutants by 70-80% in crops irrigated with BIODAPH reclaimed water

Zero pollution

Removing emerging pollutants by ~70% for pharmaceuticals, 90% for AMR, 80% for microplastics, and 60% for PFAS

Circular economy

Significant reduction in operating costs as the treatment is free from chemicals and is less energy-intensive

Sustainable management

Reduction of the carbon footprint and greenhouse gas production by more than 80%

Acknowledgements

Innovative ecological-based modular water reclamation system INNOQUA.

EU H2020-WATER-2015-two-stage. 2016-2020.

BIODAPH: An eco-efficient tertiary system for water reuse in agricultural irrigation (TED2021-132721B-I00).

BIODAPH2O - Eco-efficient system for wastewater tertiary treatment and water reuses in the Mediterranean region EU LIFE2021-SA-ENV. 2022-2026.

eurecat

4-5 June 2025

Murcia region & online

Thank you!

https://life-biodaph2o.eu/

Victoria Salvadó
Coordinator
victoria.salvado@udg.ec

An innovative solution to remove contaminants of emerging concern from water streams

